电压如何形成?

网上有关“电压如何形成?”话题很是火热,小编也是针对电压如何形成?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。物质在常规状态下,各结...

网上有关“电压如何形成?”话题很是火热,小编也是针对电压如何形成?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

物质在常规状态下,各结构元的价和电子规律运转,协调、相安。是电子的转移后非常规的电子运动产生了静电,非常规的电子运动伴生的波就是静电电压。

电荷分布在金属表面或聚集在尖端,是因为价和电子规律运转伴生的电磁波的驱使。静电平衡理论是唬人的。

什么是电压?在大学教材里说到:“电压是静电场或电路中两点间电动势之差”(有的书上用电位之差)。有电动势之差才能形成电流。书中提到,电位差是由电源提供的,电源如何在物质内形成电位差,就用做功一语带过。至于如何做功,做功如何在物质内形成电压,就成了难言之隐,闭口不谈了。

在中学物理教科书上只是把电压与水压相比较,说电压是电位(同水位)、是电子的电动势(同势能)。这比喻还凑合,但是这物体内电子的电位是如何提升的?物体内电子的电动势之差是怎么形成的?却一直是个困惑的问题。用电位差解释直流电从高电位流向低还有可说,可如何面对物质内形成的电压正弦波,方波?

一、绝缘体的静电及静电电压

要探讨论物质内电压的形成原理。我们就先来看看物质内形成电压的基本实验——摩擦生电。

在静电实验中,丝绸摩擦玻璃棒、毛皮摩擦硬橡胶棒、以及化纤织物与天然织物摩擦后都能带静电,同时产生静电电压,而且化纤织物能产生上万伏的静电电压。我们就这个实验事实来看看静电是怎么产生的,静电电压是怎么形成的?

预备知识:1、在中学物理电学的实验中,当直流导线导通时,小磁针立即偏转,断开时,小磁针立即复原;杂乱的铁粉在直流导线周围形成了规则的同心圆;用右手定测能测定电流方向与磁场之间的确定关系。这是大自然在提示我们:电子的运动伴生着电磁波。

2、在《挑战量子物理(四)第二章、物质的构成 4 》谈到:核外电子的规律运转同样也伴生着电磁波。在通常情况下这种电磁波在物质内协调稳定,构成了物体的内聚力(价和力、电磁力),物体对外不显电性。物体不带电,与大地的电势差为零(一般情况下认为大地的电位是零)。

静电实验中的合成绝缘体(玻璃棒、硬橡胶棒、以及化纤织物)是由成百上千个结构元错综结合而成的大分子聚合物,结构成分复杂,在常温下、在没有摩擦的情形下,各结构元的价和运转协调、相安。核外电子在各自轨道按常规运动,这时物体不带电,与大地的电势差为零(没有电压)。

实验中摩擦的另一方是天然物品(丝绸、毛皮、天然织物)。天然物品是大自然的造物,能与大自然有很好的交流,摩擦时,转移来的电荷能很快地传递到大气之中。

摩擦时,核外电子速率加快,产生了热,发生了电子运动的紊乱,发生了电子转移,形成了多出或缺少电子的状况。合成绝缘体内多出的电子没有正当的归属,在物体内部乱窜,形成带负电的静电;缺少电子的结构元则四处挪用电子,形成带正电的静电,多出电子或缺少电子对外形成了物质所带的电荷,对外显现为电场。

多出或挪用的电子没有正当的归属,在物质内受到驱赶、换位、挤压、牵扯等非常规的运动,这种非常规运动的电子伴生着非常规的电磁波。物质内原来协调、稳定运转的核外电子受到非常规的电磁波的扰动,这个非常规的电磁波就是驱使电子随波运动的电动势,这也就是我们所说的电压。

本来物体的核外电子数是稳定的,电子运转伴生的电磁波也协调、稳定,电压为零。很明显,是电子的转移后非常规的电子运动产生了静电、非常规的电子运动伴生的波有驱赶电子脱离正常轨道运动的趋势,非常规的电子运动伴生的波就是静电电压。

物质内能驱使电子的非常规的电磁波的强弱就是电压的高低。

如果按现有理论,物质的核外电子是毫无规律的电子云,电子运动的线路杂乱无章,电子没有固定的归属,摩擦如何能产生静电;不考虑电子运动伴生的波,静电电压从何而来?

二、金属与静电

金属导体内结构元基本独立,核外电子高速稳定,有固定的归属,不容易转移、不容易失去,无论怎么摩擦也不会发生像大分子聚合物那样电子运动的混乱或电子的转移,所以摩擦金属不会产生静电。

然而金属导体存在较大的电子空位,带电荷的物体与金属接触,在电压的作用下,电荷进入金属,使金属导体带电。同时,多出(或缺少)电子的运动伴生着的非常规的电磁波,多出的电子运动伴生的波有挤占正常电子脱离轨道运动的趋势(带负电),缺少电子结构元则挪用相邻原子的正常电子使其脱离轨道运动的趋势(带正电)。非常规的电子运动伴生的波就形成了金属导体的静电电压。

移来(走)的电子越多,金属体中电子的挤占(挪用)现象越剧烈,伴生着的非常规的电磁波就越强,物体的电压就越高。

非常规的电磁波(电压波)可以是高电位,也可以是低电位;可以是直流,也可以是交流;可以是正弦波、方波、尖波等各种形式的波。电压波通过电子空位充斥在导体的各个部位,一旦形成通路,导体中的电子就会随着电压波的驱使在电子空位中换位移动形成电流,

如果按现有理论,金属内充满着自由电子,原子外层的价电子松散,可以脱离原子在导体内自由运动,电子充分自由,没有固定的归属,那么移来移走些许电子无关痛痒。多出的外来的电子应该舒适的躺在其间;少几个电子也没有什么关系,不存在非常规的电子运动,没有非常规的电磁波,何以形成静电电压?

正因为自由电子理论与电压的形成存在着这不可调和的矛盾,现行理论无法自圆其说,于是就缄口不谈物质内电压的形成。这是当今物理学一个不光彩的侧面。

三、金属导体电荷的分布

把外电荷导入金属导体,这时立即就有电荷分布在金属表面或聚集在尖端,在平面、柱面上均布,在曲率半径小的表面聚集,同时产生电压,能在尖端放电。这是实验事实,为什么外来电荷只能分布在表面?

如果按现有理论,金属内部是充满松散的自由电子的,外来的电子也是电子,长相一样,性质相同,应该成为自由电子新成员,也应该在金属内自由分布,为何会产生歧视,驱赶到表面?如果按现有理论,核外电子是毫无规律的电子云、金属内部是充满自由电子的,那么,外来的电子应该在金属内自由分布,又如何会形成尖端放电?

面对导体的静电感应和电荷趋附表面、趋尖的事实,自由电子理论难以自圆其说,于是就编造出了个静电平衡理论。

大学的教材把这种现象归结为“静电平衡”。静电平衡理论很奇特,在平常状态金属内的“松散的、可以脱离原子的自由电子”,在移走(来)了几个电子后,原来的松散电子顿时就失去了自由!静电平衡的原理何在?为什么在平常状态金属内电子“自由自在”,移走(来)了几个电子,导体内顿时就成了等势体?

静电平衡理论很离奇、很费解,只要移去(来)几个电子,就能在皮秒内使几万亿亿个自由电子顿时失去自由,使每秒1000公里速度(300K)运行的自由电子不再宏观运动,却不能交代此时失去自由的电子会以怎样的线路运动。而且这些只是发生在1立方厘米铜材内的故事。(数据摘自《大学物理教程》,吴锡珑主编,第二册,第二版 第12章)

一般学生对1立方厘米铜材发生静电平衡,可能没有多大的感触。我们不妨想大点,设想一下,一艘下水前的航母只要移去(来)几个电子,就能使十几万吨钢铁的多少亿亿亿个自由电子顿时失去自由,而且是在皮秒内使每秒1000公里速度运行的自由电子改变运动状态,其间包含了多大的冲量!这样的状况竟是由带电的小球感应或是移出几个电子造成,真是太神奇了!符合能量守恒定律吗?符合动量守恒定律吗?实在是匪夷所思!

静电平衡理论费了好大的劲连唬带混地“解释”了电荷的趋表,可面对电荷在趋表的同时产生的静电电压,就闭口不谈。

青年学者们读书要用自己的头脑深入的想一想,不要尽信书,不要完全的被动的接受。

事实上导体内物质运动状况正如《挑战量子物理(四)第二章、物质的构成 4 》所说:金属导体内核外电子的规律运转同样也伴生着电磁波。在通常情况下这种电磁波在物质内协调稳定,构成了物体的内聚力(价和力、电磁力),金属内充满电磁波。

外来电荷进入金属导体,受到金属体内规律稳定的核外电子运转所伴生着的电磁波的排挤,无容身之地,被赶到了电磁波不太密集的导体表面,这就形成了外来电荷分布在金属表面的自然现象。

因为导体的结构元大小一致,分布均匀,由此也形成了电荷在球面或大平面、大柱面的表面均匀分布。(无外磁场、电场的干扰)

由于金属体的结构元大小一致,在物体表面曲率半径不同的地方不可能分布均匀,在曲率半径小的地方结构元间靠外表面处的间隙大(可以想象成用砖块砌圆角),电荷在此聚集较密。在曲率半径更小的物体尖端,外表面处的结构元间隙更大,电荷聚集更密,密集的电荷在此非常规运动,形成较高的电压,又没有有效的约束,所以此处电荷容易外溢,形成物体的尖端放电。

分布在表面或尖端的电荷不会是静止的,受到核心库仑力的吸引,这些电子会窜入附近的结构元参与价和运转,顶替出原来的价和电子,造成了导体表面电子运转的紊乱,紊乱运转电子所伴生着的非常规的电磁波形成了导体静电电压。

这样,用核外电子规律运动的观点综合解释了物质内进入了电荷形成电压的原理;解释了金属导体内进入了电荷所形成的电荷趋表、趋尖,以及导体内形成电压的原理。说理明晰,与实验事实全面的相符。

科学应该是坦诚、敞亮的,不需要丝毫的遮掩;科学应该是系统的、逻辑的,与自然事实完全相符。那些不能自圆其说,于是就回避、遮掩的就是伪科学。

科学无禁区,我希望我们的科学界正面回答,“电压是怎样形成的,”不要再欺骗我们的孩子,不要回避、胡弄我们的孩子。科学家首先应该是一个诚信、正直的人。

关于“电压如何形成?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[春云]投稿,不代表南人号立场,如若转载,请注明出处:https://nanren30.com/cshi/202501-340.html

(366)

文章推荐

  • 幼儿园大班教案《植物》含反思

    网上有关“幼儿园大班教案《植物》含反思”话题很是火热,小编也是针对幼儿园大班教案《植物》含反思寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 作为一名优秀的教育工作者,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。来参考自己需要的教案吧!

    2024年12月15日
    4
  • 关于湖北的历史知识点

    网上有关“关于湖北的历史知识点”话题很是火热,小编也是针对关于湖北的历史知识点寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一、襄阳的由来襄阳这个名字来源于南北朝时期的地理名著《水经注》中的记载:城在襄水之阳,故曰襄阳也。古人以水的北面为阳,襄阳因为在襄水的

    2024年12月15日
    3
  • 小学数学知识点有哪些-

    网上科普有关“小学数学知识点有哪些?”话题很是火热,小编也是针对小学数学知识点有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。小学数学知识点:1、算式:加,减,乘,除。2、对三角形的认识、三角形的面积计算公式、三角形的周长计算公式。3、长方形的周长计算

    2024年12月15日
    9
  • 防火小知识

    网上有关“防火小知识”话题很是火热,小编也是针对防火小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。1、教育孩子不玩火,不玩弄电器设备。2、不乱丢烟头,不躺在床上吸烟。3、不乱接乱拉电线,电路熔断器切勿用铜、铁丝代替。4、炉灶附近不放置可燃易燃物品,炉灰

    2025年01月15日
    307
  • 电脑键盘各个按键功能

    网上有关“电脑键盘各个按键功能”话题很是火热,小编也是针对电脑键盘各个按键功能寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。电脑键盘上每个键的作用如下:1,F1帮助、F2改名、F3搜索、F4地址、F5刷新、F6切换、F10菜单、F11大小化IE

    2025年01月15日
    255
  • 道路编号标志字母

    网上有关“道路编号标志字母”话题很是火热,小编也是针对道路编号标志字母寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。高速公路路线的命名,应按照首都或者省会放射线、北南纵线和东西横线的起讫点方向顺序排名,采用起讫点所在地的主要行政区划名称:——放射线以首都或省

    2025年01月15日
    319
  • 房地产发展的历史

    网上有关“房地产发展的历史”话题很是火热,小编也是针对房地产发展的历史寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。中国房地产市场发展的历史第一阶段:理论突破与试点起步阶段(1978至1991年)1978年理论界提出了住房商品化、土地产权等观点。1980年

    2025年01月15日
    292
  • 电脑上怎么去除水印

    网上有关“电脑上怎么去除水印”话题很是火热,小编也是针对电脑上怎么去除水印寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。当我们展示自己的时,水印就是一个很有必要的东西。但是如果是网站或者其他渠道得来的图,那么水印就是一个遭人嫌弃的东西,果真,人都是如此的双标

    2025年01月16日
    314
  • 高速公路命名编号是什么-

    网上有关“高速公路命名编号是什么?”话题很是火热,小编也是针对高速公路命名编号是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。高速公路命名编号是字母+阿拉伯数字。中国高速公路主要分为两大类,国家高速公路、省级高速公路。G字母是国字头,编号由G+阿拉伯数

    2025年01月16日
    275
  • 高中地理和历史学什么

    网上有关“高中地理和历史学什么”话题很是火热,小编也是针对高中地理和历史学什么寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。地理必修一是自然地理、第一章主要是讲天体的、带了点天文的味道第二章是物质循环与能量流动,这个比较重要。比如内力外力啊、板块

    2025年01月16日
    373

发表回复

本站作者后才能评论

评论列表(4条)

  • 春云
    春云 2025年01月16日

    我是南人号的签约作者“春云”!

  • 春云
    春云 2025年01月16日

    希望本篇文章《电压如何形成?》能对你有所帮助!

  • 春云
    春云 2025年01月16日

    本站[南人号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 春云
    春云 2025年01月16日

    本文概览:网上有关“电压如何形成?”话题很是火热,小编也是针对电压如何形成?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。物质在常规状态下,各结...

    联系我们

    邮件:南人号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们